数据资产管理“五星模型”与企业级实践

发布:科技 时间:2018-07-11 10:19

2018年大家都看到了一些数据战争,这不是偶然发生的。诸多重量级企业,如脉脉、微博、百度、美团点评、Facebook、华为等为了直接占领数据入口,甚至不惜诉诸法律。

数据作为一种资产已经达成共识。但企业将数据作为一种资产来管理时,面临的问题却越来越多。各个国家、行业的法律法规对数据资产管理也提出了更高的要求。例如,GDRP一出台就开出天价几百亿的罚单。而在去年,国内知名咨询机构艾瑞咨询发布了一个大数据能力框架,明确了数据资产管理对于大数据能力的重要性。

其实作为数据资产管理来说不在乎是不是大数据,而在于这个数据如何把它作为资产利用起来,是一个资产化的过程,这也是我们五年前提出数据资产管理概念的初衷。

数据资产管理的发展

数据资产管理“五星模型”与企业级实践

我在准备这个演讲的时候,很无聊地去全国标准的网站上简单搜索了一下,上面是统计结果,可以看出数据是多么的火热,几个维度的统计数量都远比软件多,这可能也解释了为什么不是每个国标的影响力都有那么大。

数据资产管理五星模型

数据资产管理AIGOV五星模型,历时五年持续迭代更新。2014年我们在行业中首次提出数据资产管理的概念,当时我们提出了数据资产管理的核心框架:数据架构、数据治理和数据运营;2015年我们首次发布了数据资产管理五星模型,此后在每年DAMS中国数据资产管理峰会上,我们都迭代更新一版。今年是第四版,正式命名为数据资产管理“AIGOV五星模型”。

数据资产管理“五星模型”与企业级实践

我们将数据资产管理领域的相关工作划分成五个管理域:第一个管理域是数据架构策略,针对管理体系,就是人员的组织结构,以及相关策略制度等;第二个管理域是数据集成共享,针对数据资产管理的技术平台,包括如何管理数据的采集、集成以及数据共享中心建设等;第三个管理域是数据治理,这部分就是传统数据治理的范畴,包括数据模型管理、元数据、数据标准和数据质量;第四个管理域是数据运营管理,核心是如何提升数据安全和运营效率;第五个管理域是数据增值应用,通过数据分析挖掘和开放服务,真正将数据服务于企业和企业的战略联盟间,提升数据价值、实现业务互动。

数据资产管理“五星模型”与企业级实践

AIGOV五星模型的企业级实践

虽然数据架构策略只有一个能力项,但并不是说该部分的内容不重要,相反,专业乃至专职的团队是一切管理的前提,没有组织,没有专业的团队,再好的策略计划、规章制度只会是一纸空文,无法落地。基于当前国内的现状,可能很多甲方采取的方式是自己有专人负责落实相关架构和数据资产管理策略,同时引入像新炬网络这样有整体解决方案产品的专业第三方团队,来快速实现数据资产管理平台建设和五大管理域的执行工作,比如数据采集集成、共享数据中心建设等。

数据资产管理“五星模型”与企业级实践

接下来就进入整个数据模型的管控过程,这是一个基于版本化的管控过程,包括模型设计、评审、分析稽核和版本管理等。

结合数据资产管理平台,我们可以轻松将企业级的数据标准、数据模型、元数据和数据质量实现整合、打通,以数据地图、数据资产目录等方式实现资产可视化,同时做到:

l企业级多维度元数据视图,提供可视化的展现、检索和查询,上下文的数据血缘关系分析,以及预览数据处理和变更对全局的影响度分析;

l通过平台产品的监控、稽核和版本管理能力,帮助我们实现数据标准、元数据设计稿与实际业务系统之间的差异,防止元数据与实际系统之间出现“两张皮”的现象,维护元数据的权威性和准确性;

l通过平台也可以将PDCA的质量循环有效落地,实现可视化的数据质量监控、规则调度和检查报告,从而推动数据质量的优化提升。

网站地图